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We present results from a systematic direct-numerical simulation study of pressure fluctuations in an un-
forced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid. At cascade completion,
isosurfaces of low pressure are found to be organized as slender filaments, whereas the predominant isostruc-
tures appear sheetlike. We exhibit several results, including plots of probability distributions of the spatial
pressure difference, the pressure-gradient norm, and the eigenvalues of the pressure-Hessian tensor. Plots of the
temporal evolution of the mean pressure-gradient norm, and the mean eigenvalues of the pressure-Hessian
tensor are also exhibited. We find the statistically preferred orientations between the eigenvectors of the
pressure-Hessian tensor, the pressure gradient, the eigenvectors of the strain-rate tensor, the vorticity, and the
velocity. Statistical properties of the nonlocal part of the pressure-Hessian tensor are also exhibited. We present
numerical tests �in the viscous case� of some conjectures of Ohkitani �Phys. Fluids A 5, 2570 �1993�� and
Ohkitani and Kishiba �Phys. Fluids 7, 411 �1995�� concerning the pressure-Hessian and the strain-rate tensors,
for the unforced, incompressible, three-dimensional Euler equations.
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I. INTRODUCTION

The pressure at a point in an incompressible fluid is a
nonlocal functional of the velocity field, and inherently dif-
ficult to measure in laboratory experiments. However, high-
resolution direct-numerical simulations �DNS� provide accu-
rate statistics of the pressure field. Pressure fluctuations have
been extensively studied in both numerical studies �1–6� and
laboratory experiments �7–10� of statistically steady, homo-
geneous, and isotropic turbulent flows. High-resolution nu-
merical studies �1–4� show, that the pressure spectrum exhib-
its a wave number range with power-law scaling, in
accordance with predictions from a phenomenological theory
due to Kolmogorov �11�. The pressure probability distribu-
tion is widely accepted to be negatively skewed, and to ex-
hibit an exponential low-pressure tail �7,8�. Regions of low
pressure are found to be organised as slender filamentary
structures in both numerical studies �2� and laboratory ex-
periments �9,10�.

The “canonical” isotropic turbulent flow is a decaying tur-
bulent flow behind a grid �11�. The study of decaying turbu-
lence is important since the results are uninfluenced by sta-
tistics of the forcing and directly reflect effects of the
nonlinear terms in the Navier-Stokes equations �see Eqs. �1�
below�. In contrast to statistically steady turbulence, system-
atic numerical studies of pressure fluctuations within the
context of decaying, homogeneous, and isotropic turbulence
are extremely scarce. The only available work is a low-
resolution DNS study due to Schumann and Patterson �12�
who exhibited plots of the root-mean-square pressure fluc-
tuations as a function of the time, and the isosurfaces of low
pressure. The low-pressure isosurfaces in this study �12�
were shown to be organized as “cloudlike” structures, in con-
trast to the slender filaments seen in DNS studies �2� of sta-

tistically steady turbulence at higher resolutions. The
pressure-Hessian tensor and the pressure gradient were not
studied in this work �12�. In both statistically steady and
decaying turbulence, a comprehensive study of possible
alignments between vectors of interest in a turbulent flow,
namely, the eigenvectors of the pressure-Hessian tensor, the
pressure gradient, the eigenvectors of the strain-rate tensor,
the vorticity, and the velocity, is entirely lacking.

In this paper, we present results from a systematic numeri-
cal study of the pressure, the pressure gradient, and the
pressure-Hessian tensor in an unforced, incompressible, ho-
mogeneous, and isotropic turbulent fluid. We exhibit several
results, including plots of the probability distributions of the
spatial pressure difference, the pressure-gradient norm, and
the eigenvalues of the pressure-Hessian tensor, temporal evo-
lution of the mean pressure-Hessian eigenvalues and of the
mean pressure-gradient norm, as well as isosurfaces of the
pressure and the pressure-gradient norm, at cascade comple-
tion. Statistical properties of the nonlocal part of the
pressure-Hessian tensor are also exhibited. We construct the
general alignment picture between the eigenvectors of the
pressure-Hessian tensor, the pressure gradient, the eigenvec-
tors of the strain-rate tensor, the vorticity, and the velocity.
Ohkitani �13� and Ohkitani and Kishiba �14� have derived
several interesting results for the unforced, incompressible,
three-dimensional, inviscid Navier-Stokes equations �the Eu-
ler equations� concerning the pressure-Hessian and the
strain-rate tensors. We exhibit numerical tests of some con-
jectures for the Navier-Stokes case.

The unforced Navier-Stokes equations are

�v

�t
+ �v · ��v = −

�p

�
+ ��2v , �1�

where � is the kinematic viscosity, � is the �constant� density,
and p is the pressure. On taking the divergence of Eqs. �1�,*Electronic address: kalelkar@physics.iisc.ernet.in
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and enforcing incompressibility � ·v=0, the pressure is de-
termined by

�2p = �1

2
�2 − s2�� , �2�

where the enstrophy �2=�i�i, �i��ijk� jvk is the vorticity
��ijk is the Levi-Civita tensor�, i , j ,k=1,2 ,3, with a summa-
tion implicit over repeated indices, and s2=SijSij, Sij
�1/2�� jvi+�iv j� is the strain-rate tensor.

II. NUMERICAL METHOD

We use a pseudospectral method �15� to solve Eqs. �1�
numerically, in a cubical box of side 2� with periodic
boundary conditions and 2243 Fourier modes. In this paper,
we do not address issues pertaining to the scaling of higher-
order structure functions of the pressure difference �or
pressure-velocity correlations� or investigate dissipation-
scale properties, and believe that our spectral resolution is
adequate for the types of studies that we have carried out
�barring the pressure spectrum, see below�. We have checked
that our results are unaffected by resolution considerations,
by comparing with results from a 1283 DNS study with iden-
tical �initial� Reynolds number. For the temporal evolution,
we use an Adams-Bashforth scheme �step size �t=10−3� with
double-precision arithmetic and set �=1, �=10−5. We in-
clude a hyperviscous term of the form �h�

4v in Eqs. �1�,
with �h=10−6 and have explicitly checked that our results are
unaffected by the inclusion of hyperviscosity. We note that
Borue and Orszag �16� have carried out a 2563 DNS study of
decaying, isotropic turbulence with hyperviscosity, and they
conclude that “¼inertial-range dynamics may be indepen-
dent of the particular mechanism of small-scale dissipa-
tion¼” ��16�, p. R859�. The initial velocity field is taken to
be v�k , t0��k2e−k2

ei�k �k= 	k	 is the wave number�, with �k
independent random variables distributed uniformly between
0 and 2�. This corresponds to an initial kinetic-energy spec-
trum E�k , t0��k4e−2k2

�with E�k , t��	v�k , t�	2 the one-
dimensional spectrum�, which is a convenient choice that
develops a cascade to large wave numbers �see below�. We
measure time in units of the initial “box-size” time �0
�2� /vr.m.s.

0 �here �0 equals 4.02�, vr.m.s.
0 ��
�k	v�k , t0�	2��1/2

is the root-mean-square value of the initial velocity, with the
dimensionless time �� t /�0 �t is the product of the number of
steps and �t�. We define Re0�2�vr.m.s.

0 /� to be the value of
the initial “box-size” Reynolds number �here Re0 equals
982464�. Our results are obtained for times t0	 t
 t*, where
t* is the time at which the �growing� integral scale L�t�
�
��k	v�k , t�	2 /k� /�k	v�k , t�	2� becomes of the order of the
linear size of the simulation box. For times t� t*, finite-size
effects which might well be nonuniversal, modify the nu-
merical results, and are not considered here.

In Fig. 1, we show some preliminary results that serve as
a check of our numerical method and parameter values
�which were chosen to ensure linear stability of the numeri-
cal scheme�. Figure 1�a� shows on a log-log plot, the scaled
kinetic energy spectrum k5/3E�k ,�� as a function of the wave
number k. On starting with the spectrum specified above, a

cascade of energy is seen to large wave numbers. The plots
are equispaced in time with a temporal separation of �
=0.24. The plot with open circles is calculated at cascade
completion at the dimensionless time �=�c=0.71, and shows
a wave number range �for 1�k�10� that exhibits the well-
known −5/3 power law �11,17,18�. Upon cascade comple-
tion, the shape of the energy spectrum does not change ap-
preciably �except at large wave numbers where it falls�, but
the kinetic energy decays monotonically. In Fig. 1�b�, we
plot the normalized kinetic energy-dissipation rate ���� /�0

���t���kk2	v�k , t�	2� as a function of the dimensionless time
�. The kinetic energy-dissipation rate peaks �17,18� at �=�c,
corresponding to cascade completion in the kinetic energy
spectrum, and decreases thereafter. The turbulence may be
considered as “fully developed” at �=�c and our spatial re-
sults �see below� will be calculated at this instant of time.

FIG. 1. �a� Log-log plot of the temporal evolution of the scaled
kinetic energy spectrum k5/3E�k ,�� as a function of the wave num-
ber k at temporal separations of �=0.24. The plot with open circles
is calculated at cascade completion, at dimensionless time �=�c

=0.71. �b� Plot of the normalized kinetic energy-dissipation rate
���� /�0 as a function of the dimensionless time �.
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III. NUMERICAL RESULTS

A. Pressure

At each grid point, we compute p by Fourier-transforming
Eq. �2�, solving for the pressure, and inverse Fourier trans-
forming to physical space. Kolmogorov phenomenology pre-
dicts that the pressure spectrum in statistically steady turbu-
lence exhibits a wave number range with the power-law
scaling p�k��k−7/3 �11�. Ishihara, et al. �4� have confirmed
the scaling law in a 20483 DNS study of statistically steady,
homogeneous, and isotropic turbulence at a Taylor-scale
Reynolds number Re
=732, whereas Tsuji and Ishihara �19�
have observed the scaling law by measuring pressure fluc-
tuations in the centre line of a freely decaying turbulent jet.
In Fig. 2�a�, we plot the scaled pressure spectrum k7/3p�k ,��
as a function of the wave number k, at cascade completion.

In order to observe Kolmogorov-type scaling in the pressure
spectrum over a substantial wave number range, a consider-
ably higher �initial� Reynolds number is required �20� as
compared to the result for the kinetic-energy spectrum �see
plot with open circles in Fig. 1�a��. The spectral resolution of
our study is inadequate for the purposes of fitting a power
law, and the pressure spectrum is found to exhibit a −7/3
power law only in the narrow wave number range 20�k
�50.

In Fig. 2�b�, we plot the normalized probability distribu-
tion P��pr� of the pressure-difference �pr� p�x+r�− p�x� at
cascade completion, for grid-spacing values r�	r	=1,50.
For the large seperation r=50, P��p50� is found to be close
to a Gaussian distribution �see the dashed-line curve in Fig.
2�b�� with a skewness equal to zero, and a kurtosis equal to
3.49. For r=1, stretched-exponential tails which are roughly
symmetrically placed about �p1=0 are observed, with
P��p1� having a kurtosis equal to 7.80. We note that P��p1�
does not exhibit a Gaussian core at small values of �p1 /�
�� is the standard deviation�. Our results for P��pr� re-
semble those obtained for probability distribution of the spa-
tial velocity difference �21� at large and small grid spacings,
respectively. Cao, et al. �2� obtained similar results for
P��pr� from a 5123 DNS study of statistically steady, homo-
geneous, and isotropic turbulence at Re
=218.

In Fig. 3�a�, we plot the normalized probability distribu-
tion P�p� of p, at cascade completion. The mean pressure 
p�
�angular brackets denote a volume average� was found to
equal zero, as is expected �11� for isotropic turbulence,
whereas the skewness was found to equal −0.11 and the kur-
tosis equalled 5.62. Holzer and Siggia �22� have shown ana-
lytically, that the probability distribution of the pressure is
negatively skewed and has an exponential tail, for a Gauss-
ian �23� velocity probability distribution. Brachet �24� has
found a low-pressure exponential tail in an 8643 DNS study
of decaying, isotropic turbulence with Taylor-Green �25� ini-
tial conditions. The error bars in this study �24� are probably
larger than those in the data of Fig. 3�a�. Both Pumir �1� and
Cao, et al. �2� observed a stretched-exponential tail at low
pressures, and a roughly Gaussian tail at high pressures, in
DNS studies of p in statistically steady turbulence. We con-
firm the result for negative pressures in the case of decaying
turbulence, where the fit P�	p	��e−�	p	�, �=2.55±0.01, �
=1.35±0.01 �error bars from least-square fits�, is observed at
cascade completion. However, at positive pressures, a
stretched-exponential tail with �=1.80±0.01, �=1.52±0.02
�error bars from least-square fits� is observed in our study.

In Fig. 3�b�, we plot iso-p surfaces for the isovalue p
= 
p� at cascade completion, which appear to be crumpled
sheetlike structures �found throughout the isovalue range
�
p�−� , 
p�+���. Equation �2� suggests that regions with
high vorticity and low strain-rates are simultaneously sources
of low pressure. Such regions with intense vorticity have
been observed by Douady et al. �9� and Villermaux et al.
�10� in statistically steady turbulence experiments, by using
cavitation as a visualization technique, in a liquid seeded
with bubbles. Schumann and Patterson �12� exhibited plots
of low-pressure isosurfaces from a 323 DNS study of the
unforced, incompressible, three-dimensional Navier-Stokes

FIG. 2. �a� Log-log plot of the scaled pressure spectrum
k7/3p�k ,�� as a function of the wave number k, at cascade comple-
tion. The horizontal line is drawn for reference. �b� Semilog plot of
the normalized probability distribution P��pr� �� is the standard
deviation� of the pressure-difference �pr at cascade completion, for
grid-spacing values r=1,50. The dashed-line curve is a normalized
Gaussian distribution for comparison.
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equations, which were shown to be organized as “cloudlike”
structures. In our study, at early times �
�c, regions of low
pressure �with the isovalue p= 
p�−2�� are found to be shee-
tlike �see Fig. 4�a��. At cascade completion, low-pressure
regions are found to be organized as slender filaments �see
Fig. 4�b��, with diameter of the order of the grid spacing, and
a contour length that occasionally extends nearly to the linear
size of the simulation box. We choose to quote dimensions of
the structures relative to the �fixed� box-size and the grid-
spacing, since both the Kolmogorov �dissipative� and the in-
tegral length scales vary in time, in decaying turbulence.
Isosurface plots of the enstrophy and the squared strain-rates
show �see Ref. �2�� that highly-strained regions occur close
to regions of intense enstrophy, and Eq. �2� suggests a lack of
any well-defined fluid-mechanical structure of the high-
pressure regions. In our study, iso-p surfaces in the range p
� �
p�+�� were indeed found not to exhibit any particular
structure at cascade completion.

B. Pressure-Hessian tensor

The pressure-Hessian tensor Pij ��ijp appears �13,14� in
the evolution equation for the strain-rate tensor Sij. At each

grid point, we compute the eigenvalues 
1,P, 
2,P, and 
3,P
�with the convention 
1,P�
2,P�
3,P� of Pij and the corre-
sponding orthonormal eigenvectors f1, f2, and f3. We also
compute the eigenvalues 
1,S, 
2,S, and 
3,S �with ordering
from extensional to compressive strain-rates 
1,S�
2,S
�
3,S� of Sij and the corresponding orthonormal eigenvec-
tors e1, e2, and e3.

In Fig. 5�a�, we plot the normalized probability distribu-
tion P�
i,P� of the eigenvalues 
i,P, at cascade completion.
The skewnesses of the eigenvalue distributions were found
to equal 4.73, 5.25, and −4.13 for i=1, 2, and 3, respectively.

In a constant-density flow, incompressibility requires that
�i
i,S=0, however, there is no such constraint on 
i,P. The
inset plot in Fig. 5�b� is the normalized probability distribu-
tion of the trace of Pij, P(x=Tr�Pij�) �Tr�Pij���k
k,P� at
cascade completion, which is roughly symmetrically placed
about x=0. As is well known in both decaying �18� and
statistically steady �21� turbulence, regions of intense vortic-
ity �say, for iso-	�	 values greater than 
	�	�+2�� are found
to be organized as filamentary structures, and are spatially
more localized than regions of high strain rate. Equation �2�
suggests that locally, in regions of intense enstrophy,
Tr�Pij�=�2p�0. In Fig. 5�b�, we plot the normalized prob-
ability distribution P(Tr�Pij�) of the trace of Pij at cascade
completion conditioned on 	�	� 
	�	�+2�, which is found to
have a positive mean as expected.

FIG. 3. �a� Semilog plot of the normalized probability distribu-
tion P�p� of the pressure p, at cascade completion. The dashed-line
curve is a normalized Gaussian distribution for comparison. �b� Plot
of iso-p surfaces for the isovalue p= 
p�, at cascade completion.

FIG. 4. �a� Plot of iso-p surfaces for the isovalue p= 
p�−2� at
the dimensionless time �
�c. �b� Plot of iso-p surfaces for the
isovalue p= 
p�−2�, at cascade completion.
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Ohkitani and Kishiba �14�, have shown that the pressure-
Hessian tensor Pij can be decomposed into the sum of a
diagonal tensor �ij�

2p /3 �the “local” term�, �ij is the Kro-
necker delta, and a symmetric, zero-diagonal tensor Qij �27�
�the “nonlocal” term�. The local term, as the name indicates,
can be expressed purely in terms of the vorticity and the
strain-rate at each point of the fluid �see Eq. �2��, however,
the nonlocal term can be expressed only in terms of an inte-
gral over the entire fluid volume. Ohkitani and Kishiba �14�
have also shown �for Taylor-Green �25� initial conditions�
that the nonlocal term contributes significantly to enstrophy
growth. Since Qij = Pij −�ij�

2p /3 has zero trace, its eigen-
value 
1,Q�0, 
3,Q�0, and the sign of 
2,Q is indeterminate.
In Fig. 5�c�, we plot the normalized probability distribution
P�
i,Q� of the eigenvalues 
i,Q, at cascade completion. We
find that 
2,Q has a positive mean. The statistically preferred
ratio of the mean eigenvalues 

1,Q� : 

2,Q� : 

3,Q� was found
to equal 46:1 :−47, at cascade completion �26�.

In Fig. 6�a�, we plot the mean eigenvalues 

i,P� as a
function of the dimensionless time �, these evolve in a way

FIG. 5. �a� Semilog plot of the normalized probability distribu-
tion P�
i,P� of the eigenvalues 
i,P of the pressure-hessian tensor
Pij, at cascade completion. �b� Semilog plot of the normalized prob-
ability distribution P�x=Tr�Pij�� of the trace of Pij �Tr�Pij�
��k
k,P� at cascade completion, conditioned on 	�	� 
	�	�+2�.
The inset is a semilog plot of the normalized probability distribution
P�x� of x=Tr�Pij�, at cascade completion. �c� Semilog plot of the
normalized probability distribution P�
i,Q� of the eigenvalues 
i,Q

of the tensor Qij �see the text for the definition�, at cascade
completion.

FIG. 6. �a� Plot of the mean eigenvalues 

i,P� of Pij as a func-
tion of the dimensionless time �. �b� Plot of 

2,P� as a function of
the dimensionless time �, in the range 0��	0.75.
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that is similar to the temporal evolution of the kinetic-energy
dissipation rate, with a peak in the magnitude of 

i,P�, at
cascade completion �see Fig. 1�b��. Similar results �not
shown here� were obtained for the temporal evolution of


i,Q�. Ohkitani �13�, in a 1283 DNS study of the unforced,
incompressible, three-dimensional Euler equations, showed
that 
3,P changes sign �locally, in regions of intense enstro-
phy� from positive to negative at early times. However, in
our study, we find that 

2,P� changes sign �see Fig. 6�b�� at
�=0.37 from negative to positive, whereas 

3,P� remains
negative at all times �not shown here�.

In Fig. 7�a�, we plot the normalized probability distribu-
tion of the cosines of the angles between the eigenvectors f i
of Pij �28� and the pressure-gradient �p �see below�, at cas-
cade completion. In Fig. 7�b�, we plot the normalized prob-
ability distribution of the cosines of the angles between the
eigenvectors f i and �, at cascade completion. Ohkitani �13�
showed that � is preferentially parallel �or antiparallel� to the
eigenvector f3 corresponding to the pressure-Hessian eigen-
value 
3,P smallest in magnitude, in contrast to our result,
which shows that � is preferentially parallel �or antiparallel�
with the eigenvector f2 corresponding to the intermediate
eigenvalue 
2,P. In Fig. 7�c�, we plot the normalized prob-
ability distribution of the cosines of the angles between the
eigenvectors f i and the velocity v, at cascade completion.

C. Pressure gradient

A systematic numerical study of the pressure gradient is
entirely lacking in both statistically steady and decaying tur-
bulence. In Fig. 8�a�, we plot the normalized probability dis-
tribution P�	�p	� of the Euclidean norm �	x	�
�ixi

2 for vec-
tor x with components xi� of the pressure-gradient �p at
cascade completion, which does not exhibit a stretched-
exponential tail. The author has been unable to determine a
functional form which gives a good fit for the tail of P�	�p	�.

In Fig. 8�b�, we plot the mean pressure-gradient norm

	�p	� as a function of the dimensionless time �, which is
observed to peak at �=�c, as does the kinetic-energy dissipa-
tion rate �see Fig. 1�b��. In Fig. 8�c�, we plot iso-	�p	 sur-
faces for the isovalue 	�p	= 
	�p	�+2�, at cascade comple-
tion. The isosurfaces of intense pressure gradient, which are
filamentary in shape, are found to resemble the low-pressure
isosurfaces in Fig. 4�b�. Iso-	�p	 surfaces in the range 	�p	
� �
	�p	�−�� were not found to exhibit any particular struc-
ture at cascade completion.

In Fig. 9�a�, we plot the normalized probability distribu-
tion of the cosines of the angles between �p and the eigen-
vectors ei of Sij. Ashurst, et al. �5�, noted a tendency for the
alignment of �p �caused by velocity fluctuations alone� with
the most compressive strain direction e3 in a 1283 DNS study
of a statistically steady turbulent shear flow. However, in our
study, �p is not found to be preferentially parallel �or anti-
parallel� with e3, and we observe a peak in the magnitude of
P(cos��p ,e3�) at 	cos��p ,e3�	�0.86, which indicates a
preferential relative angle �� /6. In Fig. 9�b�, we plot the
normalized probability distribution of the cosine of the angle
between �p and �, at cascade completion. In Fig. 9�c�, we

FIG. 7. �a� Plot of the normalized probability distribution of the
cosines of the angles between the eigenvectors f i of Pij and the
pressure gradient �p, at cascade completion. �b� Plot of the normal-
ized probability distribution of the cosines of the angles between the
eigenvectors f i and the vorticity �, at cascade completion. �c� Plot
of the normalized probability distribution of the cosines of the
angles between the eigenvectors f i and the velocity v, at cascade
completion.
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FIG. 8. �a� Semilog plot of the normalized probability distribu-
tion P�	�p	� �	�p	 is the Euclidean norm of the pressure gradient�,
at cascade completion. The dashed-line curve is a normalized
Gaussian distribution for comparison. �b� Plot of the mean pressure-
gradient norm 
	�p	� as a function of the dimensionless time �. �c�
Plot of iso-	�p	 surfaces for the isovalue 	�p	= 
	�p	�+2�, at cas-
cade completion.

FIG. 9. �a� Plot of the normalized probability distribution of the
cosines of the angles between �p and the eigenvectors ei of the
strain-rate tensor Sij, at cascade completion. �b� Plot of the normal-
ized probability distribution of the cosine of the angle between �p
and �, at cascade completion. �c� Plot of the normalized probability
distribution of the cosine of the angle between �p and v, at cascade
completion.
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plot the normalized probability distribution of the cosine of
the angle between �p and v, at cascade completion. Both �
and v are observed to be preferentially perpendicular to �p,
in agreement with corresponding results from a 1283 DNS
study of the unforced, incompressible, three-dimensional Eu-
ler equations, due to Ohkitani and Kishiba �14�.

D. General alignment picture

Ohkitani and Kishiba �14� have found the orientations �lo-
cally, in regions of intense enstrophy� amongst the set of
vectors �ei , f i ,��, excluding the pressure gradient and the
velocity. In Figs. 7 and 9, we have plotted possible align-
ments between the sets of vectors �f i ,�p� and �ei ,v ,�� and
for completeness, we plot in Figs. 10 and 11, remaining
alignments amongst the set of vectors �ei ,v ,�� and amongst
the eigenvector bases �f i ,ei�, at cascade completion.

As is well known, in both decaying �18� and statistically
steady �21� turbulence, there is an increased probability for
alignment �or antialignment� of the intermediate strain-rate
eigenvector e2 with �, relative to the alignments between e1
and e3 with �. In Fig. 10�a�, we plot the normalized prob-
ability distribution of the cosines of the angles between �
and ei at cascade completion, which reaffirms this result for
decaying turbulence. In Fig. 10�b�, we plot the normalized
probability distribution of the cosines of the angles between
v and ei, at cascade completion. In Fig. 10�c�, we plot the
normalized probability distribution of the cosine of the angle
between v and �, at cascade completion. It is interesting to
note that the alignment plots in Figs. 7, 9, 10�a�, and 10�b�
are roughly symmetrically placed about cos �=0, however,
Fig. 10�c� is distinctly asymmetric, with a greater probability
for v and � to be antiparallel. This asymmetry has been
noted in a laboratory experiment �29� of decaying turbulent
flow past a grid, and is plausibly due to effects of the kinetic
helicity �30� �an invariant of the Euler equations� on the de-
cay process.

In Fig. 11�a�, P(cos�f1 ,e1�) is found to peak at
	cos�f1 ,e1�	�0.71, which indicates a preferential relative
angle �� /4, in agreement with corresponding results due to
Ohkitani and Kishiba �14�. The only distinct feature in Figs.
11�b� and 11�c� is that f2 is preferentially parallel �or anti-
parallel� to e2 �and perpendicular to e3�.

Ohkitani �13� has conjectured that the pressure-Hessian
tensor P �with components Pij� and the strain-rate tensor S
�with components Sij� in general are not commutative, and
therefore cannot be simultaneously diagonalized. It is of in-
terest to determine the �statistically preferred� relative orien-
tation, between the two frames with respect to which S and P
are diagonalized. Ohkitani and Kishiba �14� have conjec-
tured that the configuration of relative alignments between
the eigenvector bases �f i ,ei� is one with “least commutativity
between S and P out of all possibilities with one axis in
common” �Ref. �14�, p. 414� at cascade completion. In order
to test these conjectures, we choose the standard matrix norm
�A�= �maximum eigenvalue of ATA�1/2 �31�, where the su-
perscript T denotes the transpose conjugate. In Fig. 12, we
plot the mean norm 
��S , P��� of the commutator �S , P�
=SP− PS �32� as a function of the dimensionless time � and

FIG. 10. �a� Plot of the normalized probability distribution of
the cosines of the angles between � and the eigenvectors ei, at
cascade completion. �b� Plot of the normalized probability distribu-
tion of the cosines of the angles between v and the eigenvectors ei,
at cascade completion. �c� Plot of the normalized probability distri-
bution of the cosine of the angle between v and �, at cascade
completion.
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find that the value peaks at �=0.71. The value of the mean
norm depends on the choice of the norm; however, the trend
�which is independent of this choice� indicates that the rela-
tive configuration of the eigenvector bases �f i ,ei� is “least
commutative” at �=0.71, which is equal to the time at which
the kinetic energy-dissipation rate peaks, in accord with the
Ohkitani and Kishiba �14� conjecture.

IV. CONCLUSION

To summarize, we have presented results from a system-
atic numerical study of pressure fluctuations in an unforced,
incompressible, homogeneous, and isotropic turbulent fluid.
At cascade completion, isosurfaces of low pressure are found
to be organized as slender filaments, whereas the predomi-
nant pressure isostructures appear sheetlike. We have exhib-
ited several new results, including plots of the probability
distributions of the spatial pressure difference, the pressure-
gradient norm, and the eigenvalues of the pressure-Hessian
tensor, at cascade completion. Plots of the temporal evolu-
tion of the mean pressure-gradient norm, and the mean ei-
genvalues of the pressure-Hessian tensor have also been ex-
hibited. We have found the statistically preferred orientations
between the eigenvectors of the pressure-Hessian tensor, the
pressure gradient, the eigenvectors of the strain-rate tensor,
the vorticity, and the velocity at cascade completion. Statis-
tical properties of the nonlocal part of the pressure-Hessian
tensor have also been exhibited. We have presented numeri-
cal tests �in the viscous case� of some conjectures for the
unforced, incompressible, three-dimensional Euler equations,
proposed in earlier studies.
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FIG. 11. �a� Plot of the normalized probability distribution of
the cosines of the angles between the eigenvectors f i and e1, at
cascade completion. �b� Plot of the normalized probability distribu-
tion of the cosines of the angles between the eigenvectors f i and e2,
at cascade completion. �c� Plot of the normalized probability distri-
bution of the cosines of the angles between the eigenvectors f i and
e3, at cascade completion.

FIG. 12. Plot of the mean norm 
��S , P��� �see the text for the
definition of the norm� of the commutator �S , P�=SP− PS of the
strain-rate S and the pressure-Hessian P tensors, as a function of the
dimensionless time �.
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